
CURVATURE OF CURVES AND SURFACES –
A PARABOLIC APPROACH

ZVI HAR’EL

Abstract. Parabolas and paraboloids are used to introduce curvature,
both qualitatively and quantitatively.

1. Introduction.

Most of the standard differential geometry textbooks recognize the oscu-
lating paraboloid as a useful interpretation of the second fundamental form
of a surface. This interpretation leads to some qualitative conclusions about
the shape of the surface in consideration [9, pp.87,91]. Two extensions are
usually ignored:

(a) The osculating paraboloid has a planar counterpart, the osculating
parabola to a curve in R2. This fact is mentioned only in passing as an
exercise [5, p.26] [4, p.47], if at all.

(b) The fact that the osculating paraboloid may be used to produce con-
crete quantitative results, such as formulas for the Gaussian curvature and
the mean curvature of a surface, or even Meusnier’s formula for the curva-
ture of skew planar sections.

With these observations in mind, we introduce a unified approach to
curvature in two or three dimensions using quadratic approximation as the
fundamental concept. Geometrically, we define curvature of a planar curve
as the reciprocal of the semi-latus-rectum of the osculating parabola, instead
of considering the familiar rate of change in direction of the tangent. The
latter approach is easily visualized via the osculating circle, which, however,
does not lend itself to generalization to higher dimensions, since surfaces
have no osculating spheres (at non-umbilical points, of course). In contrast,
osculating parabolas to curves in R2 are easily and naturally generalized to
osculating paraboloids to hypersurfaces in Rn. It should be admitted that by
rejecting the use of parametric representation and differential forms we lose
much of the intrinsic geometry of surfaces. As compensation, we are given
a comprehensive understanding of the notions of curvature of curves and
surfaces, both qualitatively and quantitatively, without using any machinery
more powerful than Taylor’s approximation formula in its simplest form (i.e.
with “asymptotic” remainder [6, p.230] [2, p.71]).

The material in this paper has grown out of the author’s search for the
most adequate presentation of the above notions while teaching geometry
to students of Architecture at the Technion – Israel Institute of Technology.
The author would like to thank his students and colleagues for their help in
bringing the manuscript to its final form.
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2. Parabolas.

Consider the one-parameter family of parabolas, with vertex at the origin
and the y-axis as its axis of symmetry. The cartesian equation of such
a “canonical parabola” is x2 = 2py, or 2y = 1

px2, with p, the semi latus-
rectum, being the parameter. If several parabolas are graphed on a common
chart, one notices that as |p| is increased, the “flatness” of the parabola at its
vertex increases, while its “curvature” decreases. This makes the following
definition plausible:

Definition 2.1. The (numerical) curvature of a parabola at its vertex is∣∣∣1
p

∣∣∣.
The above definition includes the vanishing of the curvature of a straight

line as a special case, i.e. a degenerate parabola with 1
p = 0. Furthermore,

one notices that a canonical parabola is concave upward for p > 0, and
downward for p < 0. Thus the sign of p (or 1

p) signifies the direction of
concavity. We define:

Definition 2.2. The (signed) curvature κ of a parabola at its vertex is κ =
1
p .

The choice of positive direction of concavity is of course arbitrary, but
once it is made, the sign of κ enables us to distinguish between concave and
convex.

3. Curvature of Plane Curves.

Given a general plane curve, we wish to define its curvature as the curva-
ture of its closest parabolic approximation. The most enlightening example
is that of the circle:

It is well known that a beam of light, coming from infinity parallel to the
axis of symmetry and reflected by a paraboloidal mirror, converges at the
focus of the mirror. The same property holds approximately for a narrow
beam reflected by a circular (cylindrical, spherical) mirror, with the focus
located half-way between the center of the circle and the point of reflection.
This means that a circular arc with radius R can be approximated by a
parabolic arc with focal length p

2 = R
2 , or semi latus-rectum p = R (see

Figure 1).
The last observation can also be verified directly, by finding the quadratic

approximation near the origin to the ordinate of a circle with center at (0, R)
and radius R. From the equation x2 + (y − R)2 = R2, we obtain, for the
lower semi-circle,

y = R−
√

R2 − x2

= R−R

√
1− x2

R2

= R−R

(
1− x2

2R2
+ o(x2)

)

=
1

2R
x2 + o(x2).
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Figure 1. Parabolic and circular mirrors

Thus,the circular arc is approximated near (0, 0) by the parabola 2y = 1
Rx2,

with curvature κ = 1
R at the vertex.

Definition 3.1.
i. A parabola which has contact of order ≥ 2 at its vertex P with a curve

C is called the osculating parabola of C at P .
ii. The curvature of C at P is the curvature at the vertex of the osculating

parabola of C at P (assuming the existence of the latter).

Recall: Two curves have contact of order ≥ k at a point whose abscissa is
x0 if [6, p. 297] the difference of their ordinates at the point whose abscissa
is x0 +h vanishes to a higher order than the k-th power of h. Geometrically,
this implies that the osculating parabola (if it exists at all) separates the
family of parabolas with vertex at P and symmetry axis along the normal
to C at P (i.e. parabolas having contact of order ≥ 1 with C at P ) into
two sub-families, each consisting of parabolas which lie on one side of C in
some neighborhood of P . In this sense, the osculating parabola is the best
approximation to C among these parabolas. Note that the above definition
can also be applied to curves in R3.

As an example, we use Definition 3.1 to prove the existence of the osculat-
ing parabola and to compute the curvature of a curve C with the cartesian
equation y = f(x), at a point P (x0, y0), assuming that f is twice differen-
tiable at x0.

Consider a new coordinate system (ξ, η), whose origin is at the given
point P , ξ-axis is the tangent line at P , and η-axis is the upward normal
(see Figure 2). Vectorially, the new axes have the positive directions given
by (1, f ′(x0)) and (−f ′(x0), 1), respectively. Let Q(x, f(x)) be another point
on C, then its η-coordinate is its (signed) distance from the tangent line at
P , namely,

η =
f(x)− f(x0)− f ′(x0)(x− x0)√

1 + f ′(x0)2
(3.1)
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Figure 2. Local coordinate system

(positive for Q above the tangent). This implies, by the quadric approxi-
mation of f from Taylor’s formula for Q near P (assuming only that f ′′(x0)
exists), that: (assuming only that f ′′(x0) exists):

η =
f ′′(x0)

2
√

1 + f ′(x0)2
(x− x0)2 + o((x− x0)2).(3.2)

On the other hand, we have

x− x0 =
1√

1 + f ′(x0)2
ξ − f ′(x0)√

1 + f ′(x0)2
η,(3.3)

a formula which can be deduced by considering similar triangles or by equat-
ing the first components of the vector equation:

(x− x0, y − y0) =
(1, f ′(x0))√
1 + f ′(x0)2

ξ +
(−f ′(x0), 1)√

1 + f ′(x0)2
η.(3.4)

Substituting the value of η given by (3.2) into (3.3) we obtain

x− x0 =
1√

1 + f ′(x0)2
ξ + o(x− x0)

and hence, by the inverse function theorem,

x− x0 =
1√

1 + f ′(x0)2
ξ + o(ξ).(3.5)

Thus, from (3.2) and (3.5), we obtain

2η =
f ′′(x0)

(1 + f ′(x0)2)3/2
ξ2 + o(ξ2).(3.6)

We conclude that the osculating parabola is given by 2η = κξ2, where
κ = f ′′(x0)(1 + f ′(x0)2)−3/2 is the curvature of C at P (x0, f(x0)) according
to Definition 3.1 - agreeing with the standard definition - positive if C lies
locally above the tangent, i.e. if C is concave upward.
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4. Paraboloids.

In the same way we determined the curvature of a plane curve by com-
paring it with its osculating parabola, we wish to compare surfaces in a
3-dimensional space with paraboloids (i.e. non-central quadrics [8, p.99]).
Consider the family of paraboloids, each having its vertex at the origin and
the z-axis as the normal at the vertex. (Thus, the z-axis is always an axis
of symmetry.) This is a 3-parameter family given by the cartesian equation
2z = Ax2 + 2Bxy + Cy2. We classify paraboloids according to the type
of their sections with horizontal planes (z = const.). These sections are all
similar to the (pair of) conic(s) Ax2 + 2Bxy + Cy2 = ±1, called Dupin’s
indicatrix [3, p.363] of the paraboloid. Thus, we get elliptic paraboloids if
AC −B2 > 0, hyperbolic paraboloids if AC −B2 < 0, and parabolic cylin-
ders (considered as non-central quadrics of parabolic type) if AC −B2 = 0.
It is well known (and easily shown) that the discriminant K = AC − B2 is
invariant under rotations of the xy-plane, as is H = (A + C)/2. Conversely,
K and H define the indicatrix, and hence the paraboloid, uniquely up to
a rotation. Note that K is independent of the orientation of the coordi-
nate system (i.e. which way is “up”), while H changes its sign when the
orientation is reversed (compare Section 2).

Definition 4.1. The Gaussian curvature, K, and the mean curvature, H,
of the paraboloid 2z = Ax2 + 2Bxy + Cy2 at its vertex are K = AC − B2

and H = (A + C)/2, respectively.

We now interpret K and H using the curvature (as defined in Section 2)
of normal sections of the paraboloid at its vertex. Recall that a section of
a surface S is the intersection of S and a plane; a normal section of S at a
point P is the section of S by a normal plane, i.e. a plane containing the
normal to S at P. By a suitable rotation of the xy plane, we may assume
that B is zero, so that the x-axis and y-axis are the principal axes of the
Dupin’s indicatrix. We wish to find the normal sections of the paraboloid
2z = Ax2 +Cy2 at the origin, by a plane making an angle θ with the x-axis.

Using cylindrical coordinates, we set x = r cos θ, y = r sin θ, and obtain

2z = (A cos2 θ + C sin2 θ)r2.

Thus the normal section is a parabola, with curvature

κn = A cos2 θ + C sin2 θ =
A + C

2
+

A− C

2
cos 2θ

at its vertex. Assuming, for the sake of definiteness, that A ≥ C, we find

maxκn = κn|θ=0 =
A + C

2
+

A− C

2
= A,

minκn = κn|θ=π/2 =
A + C

2
− A− C

2
= C.

Since AC = K and A + C = 2H, we conclude:

Theorem 4.1 (Euler’s formula for paraboloids). The intersection of a pa-
raboloid with a a normal plane at its vertex P is a parabola, whose curvature
at P is given by

κn = κ1 cos2 θ + κ2 sin2 θ,
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where κ1 and κ2 are the roots of the equation κ2 − 2Hκ + K = 0, and θ
is the angle between the given plane and the plane for which κn attains its
maximum (if κ1 ≥ κ2, minimum otherwise).

The quantity κn is called the normal curvature of the paraboloid in the
direction of the tangent to the given normal section at the vertex, while its
extreme values, κ1 and κ2, are the principal curvatures. They are attained
in the directions of the principal axes of Dupin’s indicatrix, whence these
directions are called principal directions.

To complete the discussion, we investigate the nature of the non-normal
sections of a paraboloid, i.e. sections with planes through the vertex, making
angles φ (0 < |cos φ| < 1) with the z-axis. Assume, without loss of generality,
that the paraboloid 2z = Ax2 + 2Bxy + Cy2 is cut by a plane containing
the x-axis. Using cartesian coordinates (ξ, η) in this plane, we set x = ξ,
y = η sinφ, and z = η cosφ, obtaining

2η cos φ = Aξ2 + 2Bξη sinφ + Cη2 sin2 φ.(4.1)

This is a conic whose type is determined by the sign of the discriminant
(AC − B2) sin2 φ, i.e. the type of the paraboloid. Furthermore, since this
conic is tangent to the ξ-axis, η = o(ξ) and, from (4.1),

2η cosφ = Aξ2 + o(ξ2),

a curve which has curvature κ = A/ cosφ at ξ = 0. On the other hand,
the normal section having the same tangent at the vertex is given by y = 0,
2z = Ax2, with normal curvature κn = A. Thus we have:

Theorem 4.2 (Meusnier’s formula for paraboloids). A plane through the ver-
tex P of a paraboloid, making an angle φ (such that 0 < |cos φ| < 1) with
its normal axis, cuts the paraboloid in a conic (having the same type as the
paraboloid) whose curvature at P is given by

κ =
κn

cos φ

where κn is the normal curvature of the paraboloid in the direction of the
tangent to the conic at P .

Remark . A positive (negative) cosine applies when the positive direction
of concavity in the given plane makes an acute (respectively, obtuse) angle
with the upward pointing normal.

5. Curvature of Surfaces.

We now use the results of the last section to investigate general surfaces.

Definition 5.1.
i. A paraboloid which has contact of order ≥ 2 at its vertex P with a

surface S is called the osculating paraboloid of S at P .
ii. The Gaussian curvature, mean curvature, Dupin’s indicatrix, normal

curvature, etc. of S at P are respectively, the Gaussian curvature, mean
curvature, Dupin’s indicatrix, normal curvature etc. at the vertex of
the osculating paraboloid (assuming its existence).

iii. P is an elliptic, hyperbolic or parabolic point of S if the osculating
paraboloid is elliptic, hyperbolic, or a parabolic cylinder, respectively.
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The derivation of the equation of the osculating paraboloid of a twice
differentiable surface, in a manner analogous to that of Section 3, is dif-
fered to Section 7, because it is more technical. At this point we notice
that Theorems 4.1 and 4.2 immediately imply the following two classical
theorems:

Theorem 5.1 (Euler). The intersection of a surface with a normal plane
at a point P is a curve, whose curvature at P is given by

κn = κ1 cos2 θ + κ2 sin2 θ,

where κ1 and κ2 are the roots of the equation κ2 − 2Hκ + K = 0, and θ
is the angle between the given plane and the plane for which κn attains its
maximum (if κ1 ≥ κ2, minimum otherwise).

Theorem 5.2 (Meusnier). A plane through a point P of a surface S, mak-
ing an angle φ (such that cosφ 6= 0) with the normal at P , cuts S in a curve
whose curvature at P is given by

κ =
κn

cosφ
,

where κn is the normal curvature of S in the direction of the tangent to the
given section at P .

Both theorems follow from the fact that the second order contact of S with
its osculating paraboloid at P implies the same order of contact for the plane
sections of S with the corresponding sections of the paraboloid. We also note
that the foregoing treatment of surfaces in R3 extends to hypersurfaces in
Rn.

6. Applications.

As an application of the above theory, we easily compute the Gaussian
and mean curvature of a surface of revolution S, obtained (in cylindrical
coordinates) by rotating the curve r = f(z) about the z-axis. Since any
plane through the axis of revolution is a plane of symmetry of S, we deduce
that the osculating paraboloid at a given point P (r0, θ0, z0) of S is symmetric
about the plane containing P and the z-axis. This is a normal plane which
cuts S in the meridian θ = θ0, with curvature

κ1 =
f ′′(z0)

(1 + f ′(z0)2)3/2
(6.1)

(see Section 3). The above symmetry implies this is one of the principal
curvatures, the other one being the normal curvature in the perpendicular
direction, that is tangent to the parallel z = z0 at P . Since the parallel is a
circle with curvature 1/r0, and its radius makes an obtuse angle φ with the
outward normal at P (see Figure 3) such that tanφ = − |f ′(z0)|, we obtain
the value

κ2 =
cos φ

r0
= − 1

f(z0)
√

1 + f ′(z0)2
(6.2)

for the corresponding normal curvature by using Meusnier’s formula (which
applies since cosφ 6= 0. Note that |κ2| is the reciprocal of the length of the
normal segment PN in Figure 3). From (6.1) and (6.2) we get
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θ = θ0

r0
φ
P

N

z = z0

Figure 3. Surface of revolution

K = κ1κ2 = − f ′′(z0)
f(z0)(1 + f ′(z0)2)2

,

H =
κ1 + κ2

2
=

f(z0)f ′′(z0)− f ′(z0)2 − 1
2f(z0)(1 + f ′(z0)2)3/2

,

(6.3)

the usual formulas for the Gaussian curvature and the mean curvature, re-
spectively.

Note that as an extra bonus we have shown that the meridians and par-
allels of S are principal curves or lines of curvature, that is, curves whose
tangents are always in principal directions.

As a specific application of formulas (6.1) to (6.3) consider the catenoid
r = a cosh z/a which satisfies the differential equations r/a = (1 + r′2)1/2 =
ar′′ and thus has the principal curvatures κ1 = a/r2 along the meridians
(catenaries) and κ2 = −a/r2 along the parallels. Consequently K = −a2/r4

and H = 0 everywhere. (Note that κ1 = −κ2 is due to the characterization
of the catenary as the only curve whose curvature at P is equal to the
reciprocal of the normal segment PN).

The theory of asymptotic directions and minimal surfaces provides a sec-
ond application of the osculating paraboloid. A direction of vanishing nor-
mal curvature on a surface is called asymptotic. Euler’s Theorem 4.1 implies
the existence at a hyperbolic point of two asymptotic directions. This is due
to the fact that the sections of the osculating hyperbolic paraboloid in the
directions of the asymptotes of Dupin’s indicatrix are straight lines (whence
the name “asymptotic”). In particular the asymptotes are mutually per-
pendicular if and only if the indicatrix is an equilateral hyperbola. In other
words, the asymptotic directions are orthogonal if and only if the principal
curvatures are equal in absolute value, i.e. H = (κ1 + κ2)/2 = 0. A surface
with identically zero mean curvature is said to be minimal, as it can be
shown to minimize surface area (locally, with respect to a fixed boundary
[5, p.219]). One example is the catenoid (mentioned above), which is the
only minimal surface of revolution (except the plane [4, p.202]).

Another instructive example is provided by the helicoid, the ruled surface
given by the cylindrical equation z = aθ. Recall that a ruled surface is a
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P (r0, 0, 0)
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x = r0, z = aθ

helix
r = r0, z = aθ

Figure 4. The helicoid z = aθ

surface swept out by a line moving along a curve (the z-axis, in this case);
the various positions of the line are called rulings. To investigate the nature
of the surface at a given point P (r0, θ0, z0), we observe that the surface is
symmetric about the ruling θ = θ0, z = z0 through P (i.e. symmetric with
respect to a half-turn θ → 2θ0−θ, z → 2z0−z). The osculating paraboloid at
P inherits this symmetry, and since the ruling is not the normal in its vertex,
the paraboloid is necessarily an equilateral hyperbolic paraboloid (check that
any other paraboloid has only the normal as an axis of symmetry), proving
that the helicoid is minimal! For added clarity, we describe two orthogonal
sections of the helicoid with vanishing normal curvature at P , as in Figure 4
(where we put θ0 = 0 without any loss of generality). First, any plane
containing the ruling (the x-axis in Figure 4) through P , the normal plane
included, cuts the surface in a straight line. Second, the plane (x = r0 in
Figure 4) perpendicular to the ruling at P yields a normal section of the
helicoid which is symmetric about P , and the symmetry implies that P is
an inflection point, in other words the osculating parabola of the section at
P is a straight line. But the line is also tangent to the helix z = aθ, r = r0.
Thus the helices on the helicoid have the property (shared obviously by the
rulings) that their tangents always lie in an asymptotic direction. Curves
with this property are called asymptotic curves.

In addition to the principal curves and asymptotic curves, there is a third,
even more important kind of a curve. One can easily verify that Meusnier’s
formula holds for the curvature of any (not necessarily planar) curve on the
surface, as long as the plane of its osculating parabola makes an angle φ
with the normal to the surface. Thus, we have |κ| ≥ |κn|, with equality if
and only if φ = 0, in which case we get the “straightest” curve possible [7,
p.221]. This motivates the following:

Definition 6.1. A curve C on a surface S is called a geodesic if, for every
point P on C, the plane of the osculating parabola to C at P contains the
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normal to S at P (or if the osculating parabola to C at P degenerates to a
line, in which case the normal plane containing this line may be chosen).

The great importance of geodesics is the fact that in addition to being
the straightest they are also the “shortest” curves on the surface, and hence
they are a generalization to lines in the plane [7, p.222]. Geodesics minimize
distance in two senses: Locally, it may be shown [5, p.265] that if two points
on a geodesic are close enough, then the geodesic segment between them
is the shortest curve joining these points. Globally, any two points on a
complete surface (intuitively, a surface without holes or edges) may be joined
by a geodesic, which is the shortest curve between the points (Hopf-Rinow
Theorem [5, p.285]).

Great circles on a sphere, being normal sections, are geodesics. Two
antipodal (diametrically opposite) points on the sphere may be joined by
infinitely many great semicircles, each of which minimizes the distance be-
tween the two points. Given two non-antipodal points, one can draw a
unique great circle through the points and get two unequal geodesic seg-
ments joining them. Of course, only the shorter one minimizes distance
globally.

As mentioned above, the meridians of a surface of revolutions are normal
sections, and hence geodesics. A parallel z = z0 in a surface of revolution
is a geodesic if is a normal section, i.e. if φ = π or f ′(z0) = 0. Hence,
parallels of extreme radius, called equators, are geodesics. Such an equator
is for instance the “waist”, z = 0 and r = a of the catenoid. Finally, since
the osculating parabola to a line lying on a surface is just that line, all the
rulings of a ruled surface are geodesics.

Geodesics were introduced as the straightest curves on a surface S. As
the plane of the osculating parabola at a point P contains the normal to S
at P , the orthogonal projection of the geodesic on the tangent plane to S at
P has a line for its osculating parabola, hence its curvature vanishes at P .
(This is because the osculating parabola of the projection is the projection
of the osculating parabola!) Thus, we define the geodesic curvature κg of a
curve C at a point P on S as the curvature at P of the orthogonal projection
of C on the tangent plane to S at P . It measures the deviation of C from
being a geodesic, and is the intrinsic curvature of C as a subset of S (i.e.
the curvature of C as seen by two dimensional inhabitants of S). Let φ be
as above, we have

κg = κ sinφ(6.4)

(as the focus a projection of a parabola is the projection of its focus). Com-
bining (6.4) with Meusnier’s formula

κn = κ cosφ

we get immediately

κ2 = κ2
n + κ2

g.(6.5)

Being straightest curves, geodesics have a useful kinematic interpretation:
The orbit on a surface S which is traced by a particle which has no acceler-
ation component tangential to S is a geodesic. As the osculating parabola
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has a contact of order ≥ 2 with the curve, a particle moving along an or-
bit C has the same velocity and acceleration vectors at a point P as if it
moved along the osculating parabola to C at P with the same speed ds/dt
and tangential acceleration d2s/dt2 at P . In particular, if it moves along C
at a constant speed, one deduces it accelerates only in the direction of the
normal of the osculating parabola (called the principal normal of C) at P
and in the case C is a geodesic this normal coincides with the normal of S
at P , as stated.

Kinematic considerations are most helpful in studying geodesics on a sur-
face of revolution S [1, p.153]. Let C be such a geodesic. As the normal
to S always meets the z-axis, a constant-speed motion along C will project
orthogonally on a central motion in the xy-plane, i.e. a motion whose accel-
eration vector always points to the origin. Such “planetary motion” obeys
Kepler’s Law of Equal Areas, which may be written, in polar coordinates,

time derivative of swept area =
r2

2
dθ

dt
= constant.

If we return to C, we can replace r dθ/dt, the velocity component tangential
to the parallel, by ds/dt cosψ, where ψ is the angle C forms with the parallel
at P . Hence,

r2

2
dθ

dt
=

r

2
ds

dt
cos ψ,

and as ds/dt is constant we get Clairaut’s formula [5, p.267]

r cos ψ = c(6.6)

with c constant along C.
Formula (6.6) may be used to find the equation of any geodesic on a

surface of revolution S, given as initial data a point r0 and a direction ψ0.
We refer the reader to [4, p.257] for further details. We just mention here
that for ψ0 = π/2 we have

c = r0 cosψ0 = 0

from which we obtain the meridian ψ ≡ π/2, and if ψ0 = 0 and the parallel
r = r0 is a geodesic, we get that parallel. In any other case, the geodesic
satisfies

r ≥ c = r0 cos ψ0,

which implies it always stays on one side of the parallel r = c and if they
meet, they touch each other without crossing (as in this case cosψ = c/r = 1
we have ψ = 0 and as the parallel r = c is not a geodesic, it cannot be an
equator, which implies r < c on one of its sides). In Figure 5 we sketch
four typical geodesics on the catenoid r = a cosh z/a, corresponding to four
values of c:

A. For c = 0, a meridian.
B. For 0 < c < a, a geodesic which crosses all the parallels.
C. For c = a, the equator r = a.
D. For c > a, a geodesic which lies on one side of a parallel r = c.



12 ZVI HAR’EL

C
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Figure 5. Typical geodesics on the catenoid

All these geodesics are given by the elliptic integral

θ = ±c

∫
dr√

(r2 − a2)(r2 − c2)
.

7. Curvature Formulas.

In this section we indicate how the procedure described in Section 3,
formulas (3.1) to (3.6), generalizes to yield the quadratic approximation of a
surface S given in Monge’s form z = f(x, y) [3, p.343] in the neighborhood of
a point P (x0, y0, f(x0, y0)), assuming that f is twice differentiable at (x0, y0)
(in the sense of [2, p.58]). We then deduce the formulas for the Gaussian
curvature and the mean curvature of S at P .

Consider a new cartesian coordinate system (ξ, η, ζ), whose origin is P ,
ξη-plane is the tangent plane of S at P , and positive ζ-axis is the upward
normal. In fact, we chose the ξ-axis to be parallel to the xz-plane so that the
new axes have positive directions given by the vectors (1, 0, fx), (−fxfy, 1+
f2

x , fy) and (−fx,−fy, 1) respectively (the η-direction is obtained by taking
the vector product of the ζ- and ξ-directions), where all the derivatives are
computed at (x0, y0). By analogy with (3.1), we have for the ζ-coordinate
of a point Q(x, y, f(x, y)),

ζ =
f(x, y)− f(x0, y0)− fx · (x− x0)− fy · (y − y0)√

1 + f2
x + f2

y

(7.1)

and, using the quadratic approximation to f from Taylor’s formula (assum-
ing f is twice differentiable at (x0, y0)),

(7.2) ζ =
fxx · (x− x0)2 + 2fxy · (x− x0)(y − y0) + fyy · (y − y0)2

2
√

1 + f2
x + f2

y

+

o((x− x0)2 + (y − y0)2).
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On the other hand, we have

x− x0 =
1√

1 + f2
x

ξ − fxfy√
(1 + f2

x + f2
y )(1 + f2

x)
η − fx√

1 + f2
x + f2

y

ζ,

y − y0 =
1 + f2

x√
(1 + f2

x + f2
y )(1 + f2

x)
η − fy√

1 + f2
x + f2

y

ζ,

(7.3)

formulas which can be deduced by equating components of 3-dimensional
analog to the vector equation (3.4):

(7.4) (x− x0, y − y0, z − z0) =

(1, 0, fx)√
1 + f2

x

ξ +
(−fxfy, 1 + f2

x , fy)√
(1 + f2

x)(1 + f2
x + f2

y )
η +

(−fx,−fy, 1)√
1 + f2

x + f2
y

ζ.

But, since ζ is quadratic is x− x0 and y − y0, and therefore quadratic in ξ
and η by the inverse function theorem, it follows that:

x− x0 =
1√

1 + f2
x

ξ − fxfy√
(1 + f2

x + f2
y )(1 + f2

x)
η + o(|ξ|+ |η|),

y − y0 =
1 + f2

x√
(1 + f2

x + f2
y )(1 + f2

x)
η + o(|ξ|+ |η|).

(7.5)

Thus, from (7.2) and (7.5) we obtain

2ζ = Aξ2 + 2Bξη + Cη2 + o(ξ2 + η2),(7.6)

where

A =
1

(1 + f2
x + f2

y )1/2(1 + f2
x)

fxx,

B =
1

1 + f2
x + f2

y

(
fxy − fxfy

1 + f2
x

fxx

)
,

C =
1 + f2

x

(1 + f2
x + f2

y )3/2

(
fyy − 2

fxfy

1 + f2
x

fxy +
(

fxfy

1 + f2
x

)2

fxx

)
.

We conclude that the osculating paraboloid is given by 2ζ = Aξ2 + 2Bξη +
Cη2, and the invariants

K = AC −B2 =
fxxfyy − f2

xy

(1 + f2
x + f2

y )2
,

H =
A + C

2
=

(1 + f2
x)fyy − 2fxfyfxy + (1 + f2

y )fxx

2(1 + f2
x + f2

y )3/2

are respectively the Gaussian curvature and the mean curvature of S at P .
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